Knowledge Graph Operations
create_graph
Document Ingestion
Document Retrieval
Data Organization
Document Updates
Batch Operations
Knowledge Graph Operations
Cache Management
Knowledge Graph Operations
create_graph
Create a graph from documents
def create_graph(
name: str,
filters: Optional[Dict[str, Any]] = None,
documents: Optional[List[str]] = None,
prompt_overrides: Optional[Union[GraphPromptOverrides, Dict[str, Any]]] = None,
) -> Graph
def create_graph(
name: str,
filters: Optional[Dict[str, Any]] = None,
documents: Optional[List[str]] = None,
prompt_overrides: Optional[Union[GraphPromptOverrides, Dict[str, Any]]] = None,
) -> Graph
async def create_graph(
name: str,
filters: Optional[Dict[str, Any]] = None,
documents: Optional[List[str]] = None,
prompt_overrides: Optional[Union[GraphPromptOverrides, Dict[str, Any]]] = None,
) -> Graph
Parameters
name
(str): Name of the graph to createfilters
(Dict[str, Any], optional): Optional metadata filters to determine which documents to includedocuments
(List[str], optional): Optional list of specific document IDs to includeprompt_overrides
(GraphPromptOverrides | Dict[str, Any], optional): Optional customizations for entity extraction and resolution prompts
Returns
graph
(Graph): The created graph object containing entities and relationships
Examples
from morphik import Morphik
db = Morphik()
# Create a graph from documents with category="research"
graph = db.create_graph(
name="research_graph",
filters={"category": "research"}
)
# Create a graph from specific documents
graph = db.create_graph(
name="custom_graph",
documents=["doc1", "doc2", "doc3"]
)
# With custom entity extraction examples
from morphik.models import EntityExtractionPromptOverride, EntityExtractionExample, GraphPromptOverrides
# Example with only entity extraction examples
graph = db.create_graph(
name="medical_graph",
filters={"category": "medical"},
prompt_overrides=GraphPromptOverrides(
entity_extraction=EntityExtractionPromptOverride(
examples=[
EntityExtractionExample(label="Insulin", type="MEDICATION"),
EntityExtractionExample(label="Diabetes", type="CONDITION")
]
)
)
)
# Example with custom entity extraction prompt template and examples
graph = db.create_graph(
name="financial_graph",
documents=["doc1", "doc2"],
prompt_overrides=GraphPromptOverrides(
entity_extraction=EntityExtractionPromptOverride(
prompt_template="Extract financial entities from the following text:\n\n{content}\n\nFocus on these types of entities:\n{examples}\n\nReturn in JSON format.",
examples=[
EntityExtractionExample(label="Apple Inc.", type="COMPANY", properties={"sector": "Technology"}),
EntityExtractionExample(label="Q3 2024", type="TIME_PERIOD"),
EntityExtractionExample(label="Revenue Growth", type="METRIC")
]
),
entity_resolution=EntityResolutionPromptOverride(
examples=[
EntityResolutionExample(
canonical="Apple Inc.",
variants=["Apple", "AAPL", "Apple Computer"]
)
]
)
)
)
print(f"Created graph with {len(graph.entities)} entities and {len(graph.relationships)} relationships")
from morphik import Morphik
db = Morphik()
# Create a graph from documents with category="research"
graph = db.create_graph(
name="research_graph",
filters={"category": "research"}
)
# Create a graph from specific documents
graph = db.create_graph(
name="custom_graph",
documents=["doc1", "doc2", "doc3"]
)
# With custom entity extraction examples
from morphik.models import EntityExtractionPromptOverride, EntityExtractionExample, GraphPromptOverrides
# Example with only entity extraction examples
graph = db.create_graph(
name="medical_graph",
filters={"category": "medical"},
prompt_overrides=GraphPromptOverrides(
entity_extraction=EntityExtractionPromptOverride(
examples=[
EntityExtractionExample(label="Insulin", type="MEDICATION"),
EntityExtractionExample(label="Diabetes", type="CONDITION")
]
)
)
)
# Example with custom entity extraction prompt template and examples
graph = db.create_graph(
name="financial_graph",
documents=["doc1", "doc2"],
prompt_overrides=GraphPromptOverrides(
entity_extraction=EntityExtractionPromptOverride(
prompt_template="Extract financial entities from the following text:\n\n{content}\n\nFocus on these types of entities:\n{examples}\n\nReturn in JSON format.",
examples=[
EntityExtractionExample(label="Apple Inc.", type="COMPANY", properties={"sector": "Technology"}),
EntityExtractionExample(label="Q3 2024", type="TIME_PERIOD"),
EntityExtractionExample(label="Revenue Growth", type="METRIC")
]
),
entity_resolution=EntityResolutionPromptOverride(
examples=[
EntityResolutionExample(
canonical="Apple Inc.",
variants=["Apple", "AAPL", "Apple Computer"]
)
]
)
)
)
print(f"Created graph with {len(graph.entities)} entities and {len(graph.relationships)} relationships")
from morphik import AsyncMorphik
async with AsyncMorphik() as db:
# Create a graph from documents with category="research"
graph = await db.create_graph(
name="research_graph",
filters={"category": "research"}
)
# Create a graph from specific documents
graph = await db.create_graph(
name="custom_graph",
documents=["doc1", "doc2", "doc3"]
)
# With custom entity extraction examples
from morphik.models import EntityExtractionPromptOverride, EntityExtractionExample, GraphPromptOverrides
# Example with only entity extraction examples
graph = await db.create_graph(
name="medical_graph",
filters={"category": "medical"},
prompt_overrides=GraphPromptOverrides(
entity_extraction=EntityExtractionPromptOverride(
examples=[
EntityExtractionExample(label="Insulin", type="MEDICATION"),
EntityExtractionExample(label="Diabetes", type="CONDITION")
]
)
)
)
# Example with custom entity extraction prompt template and examples
graph = await db.create_graph(
name="financial_graph",
documents=["doc1", "doc2"],
prompt_overrides=GraphPromptOverrides(
entity_extraction=EntityExtractionPromptOverride(
prompt_template="Extract financial entities from the following text:\n\n{content}\n\nFocus on these types of entities:\n{examples}\n\nReturn in JSON format.",
examples=[
EntityExtractionExample(label="Apple Inc.", type="COMPANY", properties={"sector": "Technology"}),
EntityExtractionExample(label="Q3 2024", type="TIME_PERIOD"),
EntityExtractionExample(label="Revenue Growth", type="METRIC")
]
),
entity_resolution=EntityResolutionPromptOverride(
examples=[
EntityResolutionExample(
canonical="Apple Inc.",
variants=["Apple", "AAPL", "Apple Computer"]
)
]
)
)
)
print(f"Created graph with {len(graph.entities)} entities and {len(graph.relationships)} relationships")
Graph Properties
The returned Graph
object has the following properties:
id
(str): Unique graph identifiername
(str): Graph nameentities
(List[Entity]): List of entities in the graphrelationships
(List[Relationship]): List of relationships in the graphmetadata
(Dict[str, Any]): Graph metadatadocument_ids
(List[str]): Source document IDsfilters
(Dict[str, Any], optional): Document filters used to create the graphcreated_at
(datetime): Creation timestampupdated_at
(datetime): Last update timestampowner
(Dict[str, str]): Graph owner informationaccess_control
(Dict[str, List[str]]): Access control information
Was this page helpful?
On this page